Package: gKRLS 1.0.4

gKRLS: Generalized Kernel Regularized Least Squares

Kernel regularized least squares, also known as kernel ridge regression, is a flexible machine learning method. This package implements this method by providing a smooth term for use with 'mgcv' and uses random sketching to facilitate scalable estimation on large datasets. It provides additional functions for calculating marginal effects after estimation and for use with ensembles ('SuperLearning'), double/debiased machine learning ('DoubleML'), and robust/clustered standard errors ('sandwich'). Chang and Goplerud (2024) <doi:10.1017/pan.2023.27> provide further details.

Authors:Qing Chang [aut], Max Goplerud [aut, cre]

gKRLS_1.0.4.tar.gz
gKRLS_1.0.4.zip(r-4.5)gKRLS_1.0.4.zip(r-4.4)gKRLS_1.0.4.zip(r-4.3)
gKRLS_1.0.4.tgz(r-4.5-x86_64)gKRLS_1.0.4.tgz(r-4.5-arm64)gKRLS_1.0.4.tgz(r-4.4-x86_64)gKRLS_1.0.4.tgz(r-4.4-arm64)gKRLS_1.0.4.tgz(r-4.3-x86_64)gKRLS_1.0.4.tgz(r-4.3-arm64)
gKRLS_1.0.4.tar.gz(r-4.5-noble)gKRLS_1.0.4.tar.gz(r-4.4-noble)
gKRLS_1.0.4.tgz(r-4.4-emscripten)gKRLS_1.0.4.tgz(r-4.3-emscripten)
gKRLS.pdf |gKRLS.html
gKRLS/json (API)
NEWS

# Install 'gKRLS' in R:
install.packages('gKRLS', repos = c('https://mgoplerud.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/mgoplerud/gkrls/issues

Uses libs:
  • c++– GNU Standard C++ Library v3

On CRAN:

Conda-Forge:

cpp

3.90 score 8 stars 4 scripts 594 downloads 10 exports 29 dependencies

Last updated 4 months agofrom:3de6cac86f. Checks:11 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 05 2025
R-4.5-win-x86_64OKFeb 05 2025
R-4.5-mac-x86_64OKFeb 05 2025
R-4.5-mac-aarch64OKFeb 05 2025
R-4.5-linux-x86_64OKFeb 05 2025
R-4.4-win-x86_64OKFeb 05 2025
R-4.4-mac-x86_64OKFeb 05 2025
R-4.4-mac-aarch64OKFeb 05 2025
R-4.3-win-x86_64OKFeb 05 2025
R-4.3-mac-x86_64OKFeb 05 2025
R-4.3-mac-aarch64OKFeb 05 2025

Exports:add_bam_to_mlr3calculate_effectscalculate_interactionsget_calibration_informationget_individual_effectsgKRLSLearnerClassifBamLearnerRegrBamlegacy_marginal_effectSL.mgcv

Dependencies:backportscheckmatecodetoolsdata.tabledigestevaluatefuturefuture.applyglobalslatticelgrlistenvMatrixmgcvmlbenchmlr3mlr3measuresmlr3miscnlmepalmerpenguinsparadoxparallellyPRROCR6RcppRcppEigensandwichuuidzoo

Readme and manuals

Help Manual

Help pageTopics
Marginal Effectscalculate_effects calculate_interactions get_individual_effects print.gKRLS_mfx summary.gKRLS_mfx
Generalized Kernel Regularized Least Squaresget_calibration_information gKRLS
Machine Learning with gKRLSadd_bam_to_mlr3 ml_gKRLS predict.SL.mgcv SL.mgcv